
L-functions
(PARI-GP version 2.11.0)

Characters
A character on the abelian group G =

∑
j≤k(Z/djZ)·gj , e.g. from

znstar(q,1) ↔ (Z/qZ)∗ or bnrinit ↔ Clf(K), is coded by χ =

[c1, . . . , ck] such that χ(gj) = e(cj/dj). Our L-functions consider
the attached primitive character.
Dirichlet characters χq(m, ·) in Conrey labelling system are alterna-
tively concisely coded by Mod(m,q). Finally, a quadratic character
(D/·) can also be coded by the integer D.

L-function Constructors
An Ldata is a GP structure describing the functional equation for
L(s) =

∑
n≥1 ann

−s.
• Dirichlet coefficients given by closure a : N 7→ [a1, . . . , aN ].
• Dirichlet coefficients a∗(n) for dual L-function L∗.
• Euler factor A = [a1, . . . , ad] for γA(s) =

∏
i ΓR(s+ ai),

• classical weight k (values at s and k − s are related),

• conductor N , Λ(s) = Ns/2γA(s),
• root number ε; Λ(a, k − s) = εΛ(a∗, s).
• polar part: list of [β, Pβ(x)].

An Linit is a GP structure containing an Ldata L and an eval-
uation domain fixing a maximal order of derivation m and bit
accuracy (realbitprecision), together with complex ranges
• for L-function: R = [c, w, h] (coding |<z − c| ≤ w, |=z| ≤ h); or
R = [w, h] (for c = k/2); or R = [h] (for c = k/2, w = 0).
• for θ-function: T = [ρ, α] (for |t| ≥ ρ, | arg t| ≤ α); or T = ρ (for
α = 0).
Ldata constructors
Riemann ζ lfuncreate(1)
Dirichlet for quadratic char. (D/·) lfuncreate(D)
Dirichlet series L(χq(m, ·), s) lfuncreate(Mod(m,N))

Dedekind ζK , K = Q[x]/(T ) lfuncreate(bnf ), lfuncreate(T )
Hecke for χ mod f lfuncreate([bnr , χ])
Artin L-function lfunartin(nf , gal ,M, n)
Lattice Θ-function lfunqf(Q)
From eigenform F lfunmf(F )
Quotients of Dedekind η:

∏
i η(mi,1 · τ)mi,2 lfunetaquo(M)

L(E, s), E elliptic curve E = ellinit(. . . )
L(SymmE, s), E elliptic curve lfunsympow(E, m)

genus 2 curve, y2 + xQ = P lfungenus2([P,Q])

L1 · L2 lfunmul(L1, L2)
L1/L2 lfundiv(L1, L2)
twist by Dirichlet character lfuntwist(L, χ)

low-level constructor lfuncreate([a, a∗, A, k,N, eps, poles])
check functional equation (at t) lfuncheckfeq(L, {t})
Linit constructors
initialize for L lfuninit(L,R, {m = 0})
initialize for θ lfunthetainit(L, {T = 1}, {m = 0})
cost of lfuninit lfuncost(L,R, {m = 0})
cost of lfunthetainit lfunthetacost(L, T, {m = 0})
Dedekind ζL, L abelian over a subfield lfunabelianrelinit

L-functions
L is either an Ldata or an Linit (more efficient for many values).

Evaluate
L(k)(s) lfun(L, s, {k = 0})
Λ(k)(s) lfunlambda(L, s, {k = 0})
θ(k)(t) lfuntheta(L, t, {k = 0})
generalized Hardy Z-function at t lfunhardy(L, t)
Zeros
order of zero at s = k/2 lfunorderzero(L, {m = −1})
zeros s = k/2 + it, 0 ≤ t ≤ T lfunzeros(L, T, {h})
Dirichlet series and functional equation
[an: 1 ≤ n ≤ N ] lfunan(L,N)
conductor N of L lfunconductor(L)
root number and residues lfunrootres(L)
G-functions
Attached to inverse Mellin transform for γA(s), A = [a1, . . . , ad].
initialize for G attached to A gammamellininvinit(A)

G(k)(t) gammamellininv(G, t, {k = 0})
asymp. expansion of G(k)(t) gammamellininvasymp(A,n, {k = 0})
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