
BASH REFERENCE

Aliasing ...6
Arithmetic Evaluation.. 8
Arrays ..13
Brace Expansion... 6
Built-In Commands.. 16
Command Line Arguments............................... 3
Command Substitution...................................... 8
Conditional Expressions.................................... 15
Control Commands.. 14
Definitions ...2
Execution Order... 13
Field Splitting... 8
Functions ..12
History Substitution... 5
Input/Output ..13
Invocation and Startup3
Job Ids and Job Control..................................... 24
Options Toset.. 22
Options Toshopt.. 23
Options Totest... 21
Patterns ...9
Pre-Defined Variables ..10
Process Substitution.. 8
Prompting ...4
Quoting ...6
Readline ..25
Readline Directives.. 25
Readline Key Bindings....................................... 25
Readline Variables ..26
Restrictedbash... 2
Signals and Traps ...13
Special Characters.. 24
Tilde Substitution... 6
Variable Assignment.. 9
Variable Names.. 9
Variable Substitution... 7

CONTENTS

This reference card w as w ritten by Arnold Robbins.W e
thank Chet Ramey (bash�s maintainer) for his help.

SpecializedSystems Consultants, Inc.
(206)FOR-UNIX/(206)782-7733

FAX: (206)782-7191
E-mail: sales@ssc.com
URL: http://www.ssc.com

Linux Journal�The Premier Linux Magazine
Technical Books and CDs

SAMBA: Integrating UNIX and Window s
Shell Tutorials, KSH Reference
VI & Emacs References, VI Tutorial

OTHER SSC PRODUCTS:

©Copyright 1999 Specialized Systems Consultants, Inc.,
P.O. Box 55549, Seattle, W A 98155-0549.
All Rights Reserved.

1

This card describes version 2.02.0 ofbash.

Several typefaces are used to clarify the meaning:
� Serifa Boldis used for computer input.
� Serifa Italicis used to indicate user input and for
syntactic placeholders, such as variableorcmd.
� Serifa Roman is used for explanatory text.

blank
or more spaces and/or tab characters.In addition,
w ords are terminated by any of the follow ing
characters:
;&()|<>space tab new line

command words.

list pipelines.Can be separated by;,&,
&&,||and optionally be terminated by;,&.

n

name

keyw ord bash language.
Keyw ords are special only after a;or new line, after
another keyw ord, and in certain other contexts.

pat bashpattern. SeePatter ns.

pipeline
by a pipe (|).

string

substitution
command line w ith different text, e.g., replacing a
variable w ith its value.bash performs many
substitutions. This card lists them in the order they are
performed.

word
necessary if it contains special characters.

DEFINITIONS

Ifbashis invoked as rbash,orw ith the option, it is
restricted.The follow ing actions are not allow ed in a
restricted shell:

changing directory w ithcd
setting or unsetting$SHELLor$PATH
using path names for commands that contain/
using a path name that contains/for the.command
importingfunctions from the environment
parsing$SHELLOPTSat startup
redirecting output w ith any of>,>|,<>,>&,&>,or>>
usingexecto run a different command
adding or deleting built-in commands w ithenable
using to bypass a restricted$PATH
usingset +rorset +o restricted

These restrictions are in effect afterexecuting all
startupfiles, allow ing the author of the startup files full
control in setting up the restricted environment.(In
practice, restricted shells are not used much, as they
are difficult to set up correctly.)

RESTRICTEDbash

If you find an error in this reference and are the first to
reportit, w e w ill send you a free copy of any of our
references. Pleasew rite, or send electronic mail to
bugs@ssc.com.

Error Reporting

2

bashaccepts the one letter options to set,and the
additional one letter and GNU-style long options show n
below.

$bash[options][args]
ends option processing
ends option processing

cmd execute cmd (default reads
command from file named in
first entry ofargs and found via
path search)
print all double quoted strings
that are preceded by a$to
stdout.This implies ,no
commands are executed
set interactive mode
set restricted mode
read commands from stdin
(default)
same as ,but output in GNU
gettextformat
same as
display a help message and exit
successfully
act like a login shell
do not use thereadlinelibrary
to read commands w hen
interactive
do not read any of the
initialization files. See
Invocation And Startup,below
do not read �/.bashrc if
interactive. SeeInvocation And
Star tup,below
follow the IEEE POSIX 1003.2
standard

file usefileinstead of�/.bashrc if
interactive
same as
same as
print version information on
stdoutand exit successfully

COMMAND LINE ARGUMENTS

There are five w ays thatbashruns: normal interactive,
normal non-interactive, as sh,in POSIX mode, or
invoked viarshd.

1. Normal interactive: Login shells run commands in
/etc/profile.The first of�/.bash_profile,�/.bash_login,
and�/.profilethat is found is executed.This stage is
skipped if is used.

Upon logout,bashruns �/.bash_logoutif it exists.

Interactive non-login shells execute �/.bashrc,ifit
exists. The ifileoption changes the file that is
used.

2. Normal non-interactive: Non-interactive shells do
variable, command, and arithmetic substitution on the
valueof$BASH_ENV,and if the result names an
existing file, that file is executed.

INVOCATION AND STARTUP

3

3. Invoked as sh:Interactive login shells read and
execute/etc/profileand�/.profileif they exist.These
files are skipped if is used.Interactive
shells expand$ENV and execute that file if it exists.
Non-interactive shells do not read any startup files.
After the startup files are executed,bashenters POSIX
mode.

4. POSIX mode: When started w ith ,interactive
shells expand$ENV and execute the given file.No
other startup files are read.

5. Invoked viarshd:Ifrun fromrshdand not invoked as
sh,bashreads �/.bashrc.The option skips this
step, and the option changes the file, butrshd
usually does not pass these options on to the shell it
invokes.

If$SHELLOPTS exists in the environment at startup,
bashenables the given options.

INVOCATION AND STARTUP(continued)

When interactive,bash displays the primary and
secondary prompt strings,$PS1and $PS2.bash
expands the follow ing escape sequences in the values
of these strings.

\a an ASCII BEL character (octal 07)
\d the date in ��Weekday Month Day��format
\e an ASCII escape character (octal 033)
\h the hostname up to the first dot (.)
\H the full hostname
\n anew line
\r acarriage return
\s the name of the shell (basename of$0)
\t the time in 24-hour H H :MM:SS format
\T the time in 12-hour H H :MM:SS format
\u the user�susername
\v the version ofbash(e.g., 2.02)
\V the version and patchlevel ofbash(e.g., 2.02.0)
\w the current w orking directory
\W the basename of the current w orking directory
\! the history number of this command
\# the command number of this command
\$ a#if the effective UID is 0, otherw ise a$
\@ the time in 12-hour am/pm format
\\ abackslash
\nnn the character corresponding to octal valuennn
\[startasequence of non-printing characters
\] end a sequence of non-printing characters

The history number is the number of the command in
the history list, w hich may include commands restored
from the history file.The command number is the
number of this command starting from the first
command run by the current invocation of the shell.

The default value ofPS1is �� ��.

PROMPTING

4

H istory expansion is similar tocsh�s.Itis enabled by
default in interactive shells.History expansion
happens before the shell breaks the input into w ords,
although quoting is recognized and quoted text is
treated as one history ��w ord��.

History substitution is performed on historyevents,
w hich consist of anevent designator(w hich previous line
to startw ith), aword designator(w hich w ord from that
line to use, starting w ith zero), and one or more
optionalmodifiers (w hich parts of the w ords to use).
Colons separate the three parts, although the colon
betw een the event designator and w ord designator
may be omitted w hen the w ord designator begins w ith
�,$,*,,or%.Each modifier is separated from the next
one w ith a colon.Thehistchars variable specifies the
start-of-historyand quick substitution characters, and
also the comment character that indicates that the rest
of a line is a comment.The previous command is the
default event if no event designator is supplied.

The event designators are:
! startahistory substitution
!n command linen
n current line minus n(nprevious)
!! the previous command
!str most recent command line starting w ith

str
!?str[?] most recent command line containingstr
!# the entire command line typed so far
�old�new � quick substitution: repeat last command

changingoldtonew

The w ord designators are:
0 the zero�th w ord (command name)
n w ordn
� the first argument, i.e., w ord one
$ the last argument
% the w ord matched by the most recent

!?str?search
xy w ords xthroughy. is shortfor
* w ords 1 through the last (like)
n* w ords nthrough the last (liken)
n w ords nthrough the next to last

The modifiers are:
e remove all but the suffix of a filename
g make changes globally,use w ith s

modifier,below
h remove the last part ofa filename,

leaving the ��head��
p print the command but do not execute it
q quote the generated text
r remove the last suffix of a filename
s/old/new/ substitutenew foroldin the text.Any

delimiter may be used.An & in the
replacement means the value ofold.W ith
emptyold,use lastold,orthe most recent
!?str?search if there w as no previous old

t remove all but the last partofafilename,
leaving the ��tail��

x quote the generated text, but break into
w ords atblanksand new line

& repeat the last substitution

HISTORYSUBSTITUTION

5

\c quote single characterc
.̀..̀ old style command substitution
"..." text treated as a single argument, double

quotes removed; variable, command and
arithmetic substitutions performed;
use\to quote$,\,̀,and"

$"..." like"...",but locale translation done
.́..́ text treated as a single argument, single

quotes removed; text betw een quotes
left alone, cannot includé

$́...́ text treated as a single argument,$and
single quotes removed; no substitutions
performed; ANSI C and additional
escape sequences processed:

\a alert(bell) \v verticaltab
\b backspace \ddd octal valueddd
\f form feed \xhhh hex valuehhh
\n new line \\ backslash
\r carriage return \e escape, not in ANSI C
\t horizontal tab

QUOTING

alias name=value...

Aliases are expanded w hen a command is read, not
w hen executed.Alias names can contain any non-
special character,not just alphanumerics, except for=.
Alias expansion is done on the firstwordof a command.
If the last character of the replacement text is ablank,
then the next w ord in the command line is checked for
alias expansion.Aliases can even be used to redefine
shell keyw ords, but not in POSIX mode.

ALIASING

Brace expansion is similar to csh�s.A w ord must
contain at least one unquoted left brace and comma to
be expanded.bash expands the comma-separated
items in order,the result is not sorted. Brace
expansions may be nested. For example:

$mkdir /usr/{gnu,local}/{src,bin,lib}

BRACE EXPANSION

� substitute$HOME
�user substituteuser�s home directory
�+ substitute$PW D

substitute$OLDPW D
�n substitute${DIRSTA CK[n]}.A leading+

or is allow ed: negative values count
from the end of the stack

Tilde substitution happens after alias expansion.It is
done for words that begin w ith�and for variable
assignment.

In variable assignments, it is also done after a:in the
value. Tilde substitution is done as part ofw ord
expansion. This means for${name op word},wordw ill be
checked for tilde substitution, but only if the operation
requires the value of the right-hand side.

TILDE SUBSTITUTION

6

$name reference to shell variablename
${name} use braces to delimit shell variablename
${name word}

use variablenameif set, else useword
${name=word}

as above but also setnametoword
${name?word}

usenameif set, otherw ise printwordand
exit (interactive shells do not exit)

${name+word}
usewordifnameis set, otherw ise use
nothing

${name[n]} elementnin arrayname
${#name} length of shell variablename
${#name[*] } number of elements in arrayname
${#name[@] } number of elements in arrayname
${name#pat} remove shortest leading substring

ofnamethat matchespat
${name##pat} remove longest leading substring

ofnamethat matchespat
${name%pat} remove shortest trailing substring

ofnamethat matchespat
${name%%pat}

remove longest trailing substring
ofnamethat matchespat

${name:start}
${name:start:length}

lengthcharacters ofnamestartingat
start(counting from0); use rest of
value if nolength.Negativestart
counts from the end.Ifnameis*or@
or an array indexed by*or@,start
andlengthindicate the array index and
count of elements.startandlengthcan
be arithmetic expressions

${name/pattern/string}
value ofnamew ith first match ofpattern
replaced w ithstring

${name/pattern}
value ofnamew ith first match ofpattern
deleted

${name//pattern/string}
value ofnamew ith every match of
patternreplaced w ithstring

${name/#pattern/string}
value ofnamew ith match ofpattern
replaced w ithstring;match must occur
at beginning

${name/%pattern/string}
value ofnamew ith match ofpattern
replaced w ithstring;match occurs at end

Note:for ,=,?,and+,usingname:instead ofname
tests w hethernameis set and non-NULL; usingname
tests only w hethernameis set.

For#,##,%,%%,/,//,/#,and/%,w hennameis *or@
or an array indexed by*or@,the substring or
substitution operation is applied to each element.

VARIABLE SUBSTITUTION

7

Arithmetic evaluation is done w ith the let built-in
command, the ((...)) command and the $((...))
expansion for producing the result of an expression.

All arithmetic uses longintegers. Use to get
integer variables.Integer constants look like [base#]n
w herebaseis a decimal number betw een tw o and 64,
andnis in that base.The digits are0-9,a-z,A-Z,_and
@.A leading0or0xdenote octal or hexadecimal.

The follow ing operators based on C, w ith the same
precedence and associativity,are available.

unary plus and minus
!� logical and bitw ise negation
** exponentiation (not in C)
*/% multiply,divide, modulus

addition, subtraction
<< >> left shift, right shift
< <=> >= comparisons
== != equals, not equals
& bitw ise AND
� bitw ise XOR
| bitw ise OR
&& logical AND, shortcircuit
|| logical OR, shortcircuit
?: in-line conditional

assignment operators

Insidelet,((...)),and$((...)),variable names do not need
a$to get their values.

ARITHMETIC EVALUATION

$(command) new form
c̀ommand̀ old form

Run command,substitute the results as arguments.
Trailing new lines are removed. Characters in $IFS
separate w ords (seeField Splitting). Thenew form is
preferred for simpler quoting rules.

$((expression))arithmetic substitution

Theexpressionis evaluated, and the result is used as an
argument to the current command.

COMMAND SUBSTITUTION

cmd<(list1)>(list2)

Runs list1and list2 asynchronously,w ith stdin and
stdoutrespectively connected via pipes using fifos or
files in/dev/fd.These file names become arguments to
cmd,w hich expects to read its first argument and w rite
its second. This only w orks if you have/dev/fdor fifos.

PROCESS SUBSTITUTION

Quoted text becomes one w ord. Otherw ise,
occurrences of any character in$IFS separate w ords.
Multiple w hitespace characters that are in$IFSdo not
delimit empty w ords, w hile multiple non-w hitespace
characters do.When $IFS is not the default value,
sequences of leading and trailing$IFS w hitespace
characters are removed, and printable characters in
$IFS surrounded by adjacent $IFS w hitespace
characters delimit fields.If$IFS is NULL,bashdoes
not do field splitting.

FIELD SPLITTING

8

? match single character in filename
* match 0 or more characters in filename
[chars] match any ofchars

(pair separated by a matches a range)
[!chars] match any exceptchars
[�chars] match any exceptchars

If theextglob option to shoptis set, the follow ing
extended matching facilities may be used.

?(pat-list) optionally match any of the patterns
*(pat-list) match 0 or more of any of the patterns
+(pat-list) match 1 or more of any of the patterns
@(pat-list) match exactly 1 of any of the patterns
!(pat-list) match anything but any of the patterns

pat-listis a list of one or more patterns separated by|.

The POSIX [[=c=]]and[[.c.]]notations for same-w eight
characters and collating elements are accepted.The
notation[[:class:]]defines character classes:

alnum alphanumeric low er low er-case
alpha alphabetic print printable
blank space or tab punct punctuation
cntrl control space w hitespace
digit decimal upper upper-case
graph non-spaces xdigit hexadecimal

Threeshoptoptions affect pattern matching.

dotglob include files w hose names begin w ith.
nocaseglob ignore case w hen matching
nullglob remove patterns that don�t match

When expanding filenames,.and ..are ignored,
filenames matching the patterns in$GLOBIGNOREare
also ignored and a leading.must be supplied in the
pattern to match filenames that begin w ith..
How ever,settingG LOBIGNOREenables thedotglob
option. Include.*in G LOBIGNOREto get the default
behavior.

PATTERNS

Variable names are made up of letters, digits and
underscores. Theymay not startw ith a digit. There is
no limit on the length of a variable name, and the case
of letters is significant.

VARIABLE NAMES

A ssignments to integer variables undergo arithmetic
evaluation. Variable assignments have one of the
follow ing forms.

name=word setnametoword
name[index]=word

set elementindexof arraynametoword
name=(word...)

set indexed arraynametowords
name=([num]=word...)

set given indices of arraynametowords

VARIABLE ASSIGNMENT

9

$n use positional parametern,n 9
${n} use positional parametern
$* all positional parameters
$@ all positional parameters
"$*" equivalent to"$1 $2..."
"$@" equivalent to"$1" "$2"...
$# number of positional parameters

options to shell or byset
$? value returned by last command
$$ process number of current shell
$! process number of last background

cmd
$_ name of program in environment at

startup.Value of last positional
argument in last command.Name of
changed mail file in$MAILPATH

$auto_resume enables use of single-w ord
commands to match stopped jobs for
foregrounding. With a value ofexact,
the w ord must exactly match the
command used to startthe job.W ith
avalue ofsubstring,the typed w ord
can be a substring of the command,
like%?string

$BASH full file name used to invokebash
$BASH_ENV in normal non-interactive shells only,

value is variable, command and
arithmetic substituted for path of
startup file (See Invocation And
Star tup)

$BASH_VERSION the version ofbash
$BASH_VERSINFO[0] the major version number

(release)
$BASH_VERSINFO[1] the minor version number

(version)
$BASH_VERSINFO[2] the patchlevel
$BASH_VERSINFO[3] the build version
$BASH_VERSINFO[4] the release status
$BASH_VERSINFO[5] same as$MA CHTYPE
$CDPATH search path forcdcommand
$DIRSTACK[*] array variable containing thepushd

andpopddirectory stack
$ENV in interactive POSIX mode shells, or

w hen invoked as sh,value is variable,
command and arithmetic substituted
for path of startup file

$EUID the effective user id (readonly)
$FCEDIT default editor for thefccommand (no

default value)
$FIGNORE colon-separated list of suffixes giving

the set of filenames to ignore w hen
doing filename completion using
readline

$GLOBIGNORE colon-separated list of patterns giving
the set of filenames to ignore w hen
doing pattern matching

$GROUPS[*] readonly array variable w ith the list
of groups the user belongs to

$histchars characters that control csh-style
history (default:!�#). See Histor y
Substitution

PRE-DEFINED VARIABLES

10

$HISTCMD history number of the current
command

$HISTCONTROL w ith a value ofignorespace,donot
enter lines that begin w ith spaces
into the history file.W ith a value of
ignoredups,donot enter a line that
matches the previous line.Use
ignorebothto combine both options

$HISTFILE w here command history is stored
$HISTFILESIZE maximum number of lines to keep in

$HISTFILE
$HISTIGNORE colon-separated list of patterns; if the

current line matches any of them, the
line is not entered in the history file.
& represents the last history line.
Patterns must match the w hole line

$HISTSIZE number of previous commands to
keep available w hilebashis running

$HOME home directory forcdcommand and
value used for tilde expansion

$HOSTFILE file in format of/etc/hosts to use for
hostname completion

$HOSTNAME name of the current host
$HOSTTYPE string describing the current host
$IFS field separators (space,tab,new line)
$IGNOREEOF for interactive shells, the number of

consecutive EOFs that must be
entered beforebashactually exits

$INPUTRC name of readline startup file,
overrides �/.inputrc

$LANG name of current locale
$LC_ALL current locale; overrides $LANG and

other$LC_variables
$LC_COLLATE current locale for character collation,

includes sorting results of filename
expansion

$LC_CTYPE current locale for character class
functions (seePatter ns)

$LC_MESSAGES current locale for translating$"..."
strings

$LINENO line number of line being executed in
script or function

$MA CH TYPE astring in GNU cpu-company-system
format describing the machine
runningbash

$MAIL name of a mail file, if any
$MAILCHECK check for mail everyn seconds (60

default)
$MAILPATH filenames to check for new mail; uses

:separator;filenamemay be follow ed
by ?message; $_ in message is
matched mail file name.Overrides
$MAIL

$OLDPW D previous w orking directory
$OPTARG value of last argument processed by

getopts
$OPTERR if set to 1, display error messages

fromgetopts (default:1)
$OPTIND index of last argument processed by

getopts

PRE-DEFINED VARIABLES (continued)

11

$OSTYPE string describing the
operating system running
bash

$PATH command search path
$PIPESTATUS[*] array variable containing exit

status values from processes
in the most recently executed
foreground pipeline

$PPID process id of shell�sparent
$PROMPT_COMMAND command to run before each

primary prompt
$PS1 primary prompt string

()
$PS2 secondary prompt string (>)
$PS3 select command prompt

string (#?)
$PS4 tracing prompt string (+)
$PW D current w orking directory
$RANDOM set each time it�s referenced,

$REPLY set by the selectand read
commands

$SECONDS number of seconds since shell
invocation

$SHELL name of this shell
$SHELLOPTS colon-separated list of the

enabled shell options forset

$SHLVL incremented by one for each
sub-bash

$TIMEFORMAT format string for output of
time keyw ord. Special
constructs introduced by%.

%[p][l]R elapsed secs
%[p][l]U user CPU secs
%[p][l]S system CPU secs
%P CPU percentage
%% literal%

Optionalpgives the precision,
the number of digits after the
decimal point; it must be
betw een 0 and 3.Optionall
produces a longer format, in
the formMMmSS.FFs

$TMOUT number of seconds to w ait
during prompt before
terminating

$UID the real user id (readonly)

PRE-DEFINED VARIABLES(continued)

Functions run in the same process as the calling script,
and share the open files and current directory.They
access their parameters like a script, via$1,$2and so
on.$0does not change.return may be used inside a
function or.script. Functions share traps w ith the
parent script, except forDEBUG.Functions may be
recursive, and may have local variables, declared using
declare,local,ortypeset.Functions may be exported
into the environment w ith .

FUNCTIONS

12

Redirections are done left to right, after pipes are set
up. Defaultfile descriptors arestdin andstdout.File
descriptors above 2 are marked close-on-exec.

&>word sendstdoutandstderrtoword
>&word sendstdoutandstderrtoword
[n]<file usefilefor input
[n]>file usefilefor output
[n]>|file like>,but overrides noclobber
[n]>>file like>but append tofileif it exists
[n]<>file openfilefor read/w rite (default: fd0)
[n]<&m duplicate input file descriptor fromm
[n]>&m duplicate output file descriptor fromm
[n] close input file descriptor
[n] close output file descriptor
[n]<<word
input comes from the shell script; treat a line w ith
wordas EOF on input.If any ofwordis quoted, no
additional processing is done on input by the shell.
Otherw ise:
� dovariable, command, arithmetic substitutions
� ignore escaped new lines
�use\to quote\,$,̀,and first character ofword

[n] word as above, but w ith leading tabs ignored

Of&>and>&,the first is preferred. It is equivalent to
>word2>&1.

INPUT/OUTPUT

All substitutions and I/O redirections are performed
before a command is actually executed.

bashmaintains an internal hash table for caching
external commands.Initially,this table is empty.As
commands are found by searching the directories listed
in$PATH,they are added to the hash table.

The command search order is shell functions first, built-
in commands second, and external commands (first in
the internal hash table, and then via$PATH)third.

EXECUTION ORDER

Signal handling is done w ith thetrapbuilt-in command.
Thewordargument describing code to execute upon
receipt of the signal is scanned tw ice bybash;once
w hen thetrapcommand is executed, and again w hen
the signal is caught.Therefore it is best to use single
quotes for thetrapcommand. Traps are executed in
order of signal number.You cannot change the status
of a signal that w as ignored w hen the shell started up.

Traps onDEBUG happen after commands are executed.

Backgrounded commands (those follow ed by&)w ill
ignore theSIGINTandSIGQUIT signals if themonitor
option is turned off.Otherw ise, they inherit the values
of the parentbash.

SIGNALS AND TRAPS

Arrays in bashhave no limits on the number of
elements. Arrayindices startat0.Array subscripts
can be arithmetic expressions.Array elements need
not be contiguous.bashdoes not have associative
arrays.

ARRAYS

13

!pipeline
executepipeline.Ifexit status w as non-zero, exit
zero. If exit status w as zero, exit 1

casewordin[[(]pat 1[|pat 2]...)list;;]...esac
executelistassociated w ithpatthat matches word.
Field splitting is not done forword.patis abash
pattern (seePatter ns).|is used to indicate an OR
condition. Useleading(ifcaseis inside$()

forname[in words];dolist;done
sequentially assign eachwordtonameand execute
list.Ifin words is missing use the positional
parameters

[function]func() {list;}
define functionfunc,body is list(seeFunctions)

iflist1;thenlist2[;eliflist3;thenlist4]...[;elselist5];fi
if executinglist1returns successful exit status,
executelist2else ...

selectname[in words];dolist;done
print a menu ofwords,prompt w ith$PS3and read a
line from stdin,saving it in$REPLY.Ifthe line is
the number of one of the w ords, setnameto it,
otherw ise setnameto NULL.Executelist.Ifin
words is missing use the positional parameters.
bashautomatically reprints the menu at the end of
the loop

time[]pipeline
executepipeline;print elapsed, system and user
times onstderr.

print times in POSIX format
The$TIMEFORMATvariable controls the format of
the output if is not used.bashuses the value
$�\nreal\t%3lR\nuser\t%3lU\nsys\t%3lS�if there is
no value for$TIMEFORMAT

untillist 1;dolist 2;done
likew hilebut negate the termination test

w hilelist 1;dolist 2;done
execute list 1.Iflast command in list 1had a
successful exit status, execute list 2 follow ed by
list 1.Repeat until last command in list 1returns an
unsuccessful exit status

((...))
arithmetic evaluation, likelet "..."

[[expression]]
evaluateexpression,return successful exit status if
true, unsuccessful if false (see Conditional
Expressions for details)

(list)
executelistin a sub-shell

{list;}
executelistin the current shell

CONTROL COMMANDS

14

Used w ith the[[...]]compound command, w hich does
not do pattern expansion or w ord splitting.

string true ifstringis not NULL
file true iffileexists (is preferred)
file true iffileis a block device
file true iffileis a character device
file true iffileis a directory
file true iffileexists
file true iffileis a regular file
file true iffilehas setgid bit set
file true iffilegroup is effective gid
file true iffileis a symbolic link
file true iffilehas sticky bit set
file true iffileis a symbolic link
string true ifstringhas non-zero length
file true iffileexists and w as modified since

last read
option true ifoptionis on
file true iffileow ner is effective uid
file true iffileis a fifo (named pipe)
file true iffileis readable
file true iffilehas non-zero size
file true iffileis a socket
filedes true iffiledes is a terminal
file true iffilehas setuid bit set
file true iffileis w ritable
file true iffileis executable
string true ifstringhas zero length

file1 file2 true iffile1is new er thanfile2orfile2
does not exist

file1 file2 true iffile1is older thanfile2orfile2
does not exist

file1 file2 true iffile1andfile2are the same file
string==pattern

true ifstringmatches pattern
string!=pattern

true ifstringdoes not matchpattern
string1<string2

true ifstring1is beforestring2
string1>string2

true ifstring1is afterstring2
exp1 exp2 true ifexp1equals exp2
exp1 exp2 true ifexp1does not equalexp2
exp1 exp2 true ifexp1is less thanexp2
exp1 exp2 true ifexp1is greater thanexp2
exp1 exp2 true ifexp1is less than or equal toexp2
exp1 exp2 true ifexp1is greater than or

equal toexp2
(expression) true ifexpressionis true, for grouping
!expression true ifexpressionis false
exp1&&exp2 true ifexp1AND exp2are true
exp1||exp2 true ifexp1ORexp2is true

Iffileis/dev/fd/n,then, if there is no/dev/fddirectory,
file descriptor n is checked.Otherw ise, the real
/dev/fd/nfile is checked. Linux, FreeBSD, BSD/OS (and
maybe others) return info for the indicated file
descriptor,instead of the actual/dev/fddevice file.

Both && and ||are short circuit. Operands of
comparison operators undergo arithmetic evaluation.
For==and!=,quote any partofpatternto treat it as a
string.

CONDITIONAL EXPRESSIONS

15

These commands are executed directly by the shell.
Almost all accept to mark the end of options.

.file
sourcefile
read and execute commands from file.If
arguments, save and restore positional params.
Search$PATH;ifnothing found, look in the current
directory

: null command; returns 0 exit status
[seetest
alias [][name[=value]...]
create an alias.W ith no arguments, print all
aliases. Withname,print alias value forname

printalias before each alias
bg[jobid]
putjobidin the background

bind[map][]
bind[map][func][keyseq][func]
bind[map] file
bind[map]keyseq:func
display and/or modifyreadlinefunction and key
bindings. The syntax is same as for�/.inputrc
file read new bindings fromfile

list the names of allreadlinefunctions
map use the keymapmap

listreadlinefunctions and bindings
for re-reading
listreadlinefunctions and bindings

func show w hich keys invokefunc
keyseq remove bindings forkeyseq

listreadlinekey sequences and macros
for re-reading
listreadlinekey sequences and macros

func remove key bindings forfunc
listreadlinevariable names and values
for re-reading
listreadlinevariable names and values

break[n]
exit from enclosingfor,w hile,untilorselectloop.
Ifnis supplied, exit fromn�th enclosing loop

builtin shell-builtin[args...]
execute shell-builtin w ith given args and return
status. Usefulfor the body of a shell function that
redefines a built-in, e.g.,cd

cd[][dir]
change current directory todir($HOMEdefault).
Do directory path search using value of$CDPATH

use logical path forcd ..,$PW D (default)
use physical path forcd ..,$PW D

If both are given, the last one on the command line
w ins

cd[]
change current directory to$OLDPW D

command[]name[arg...]
w ithout or ,executenamew ith arguments arg

use a default search path, not$PATH
print a one w ord description ofname
print a verbose description ofname

continue[n]
do next iteration of enclosingfor,w hile,untilor
selectloop. Ifn is supplied, iteraten�th enclosing
loop

BUILT-IN COMMANDS

16

declare[afFirx][][name[=value]]
typeset[afFirx][][name[=value]]
set attributes and values of variables.Inside
functions, create new copies of the variables.Using
+instead of turns attributes off.W ith no names
or attributes, print every variable�s name and
attributes

nameis an array
eachnameis a function
don�t show function definitions (bodies)
nameis an integer; arithmetic
evaluation is done upon assignment
marknames readonly
marknames forexport

dirs [][+n][n]
display the directory stack
+n show n�th entry from left,n 0
n show n�th entry from right,n 0

clear the directory stack
print a longer format listing
print the stack one entry per line
print the stack one entry per line, w ith
index numbers

disow n[][][job...]
w ith no options, remove namedjobs from the table
of active jobs

remove or mark (w ith)all jobs
mark eachjobto not receive aSIG HUP
w henbashterminates
use w ith to mark just running jobs

echo[][words]
echowords; is not special

expand \-escapes (seeecho(1))
never expand \-escapes
don�t output trailing new line

printfis more portable
enable[][file][name...]
enable and disable shell built-ins, or load and
unload new built-ins from shared library files.
Disabling a built-in allow s use of a disk file w ith the
same name as a built-in

print all built-ins, w ith their status
delete a built-in loaded w ith

file load a new built-innamefromfile
disablename,orprint disabled built-ins
w ith nonames
print enabled built-ins
print only POSIX special built-ins

eval[words]
evaluatewordsand execute result

exec[name][][words]
executewords in place of the shell.If redirections
only,change the shell�s open files

usenameforargv[0]
clear the environment first
place a onargv[0](likelogin(1))

If the exec fails, non-interactive shells exit, unless
theshoptoptionexecfailis set

exit[n]
exit w ith return valuen.Use$?if non

BUILT-IN COMMANDS(continued)

17

export[][name[=value]...]
w ith no arguments, print names and values of
exportedvariables. Otherw ise,expor tnames to the
environment of commands

names refer to functions
stop exporting eachname
printexportbefore each variable

fc[editor][][first[last]]
print a range of commands fromfirsttolastfrom last
$HISTSIZEcommands

runeditorif supplied; if not, use first of
$FCEDIT,$EDITOR,orvion
commands; execute result(s)
list on standard output instead of editing
don�t print line numbers
reverse order of commands

[old=new][command]
substitutenew foroldincommand(or last command
if nocommand)and execute the result

fg[jobid]
putjobidin the foreground

getopts optstring name[arg...]
parse parameters and options (seebash(1))

hash[][file][name]
w ith no arguments, print the hash table contents,
giving hit count and file name
file enterfilefornamein the hash table

clear the internal hash table
A ssignment to$PATH also clears the hash table

help[pattern]
print help.W ithpattern,print help about all the
commands that matchpattern

history[n]
[file]

history[]
arg[...]
arg[...]

w ith no options, print the command history.An
argument ofnprints onlyn lines. Ifsupplied, use
fileinstead of$HISTFILE

append new history lines to history file
clear the history list
read new history lines in the file into the
internal history list
perform history substitution and print
the results
replace internal history w ith contents of
history file
place theargs into the history list
for later use
w rite the internal history to the file

jobs [][jobid...]
command[args...]

list information about jobs
also list process id
only list stopped or exited jobs
only list process groups
only list running jobs
only list stopped jobs
replace anyjobidin the command line
w ith the corresponding process group ID,
and execute the command

BUILT-IN COMMANDS(continued)

18

kill[sig]jobid...
kill[signame][signum]jobid...
send SIGTERM or given signal to namedjobids.
Signals are names listed in /usr/include/signal.h
w ith or w ithout the prefix ��SIG��. Stoppedjobs get
a SIGCONT first if sig is either SIG TERM or
SIG HUP
[sigs...]

list signal names and/or numbers.If sig is a
numerical exit status, print the signal that killed the
process

letarg...
evaluate eachargas an arithmetic expression; exit 0
if the last expression w as non-zero, 1 otherw ise
(seeArithmeticEvaluation)

local[name[=value]...]
create variables w ith the given values local to a
function. W ith no operands, print a list of local
variables. Mustbe used inside a function

logout
exit a login shell

popd[][+n][n]
remove entries from the directory stack.With no
arguments, remove the top entry andcdthere
+n removen�th entry from left,n 0
n removen�th entry from right,n 0

don�t change directory
printfformat[arg...]
print output like ANSI C printf,w ith extensions
%b expand escape sequences in strings
%q print quoted string that can be re-read
Format conversions are reused as needed

pushd[][dir]
pushd[][+n][n]
add an entry to the directory stack.With no
arguments, exchange the top tw o entries
+n rotate the stack so that then�th

entry from left is at the top,n 0
n rotate the stack so that then�th

entry from right is at the top,n 0
don�t change directory

dir pushdiron the stack andcdthere
pw d[]
print w orking directory name

print logical path (default)
print physical path

If both are given, the last one on the command line
w ins

name][][prompt][names...]
readstdin and assign tonames.$IFS splits input.
$REPLY is set if nonamegiven. Exit0unless end-
of-file encountered

read w ords into indexed arrayname
usereadlineif reading from a terminal
printpromptif reading from a terminal
before reading
at end of line does not do line
continuation

BUILT-IN COMMANDS(continued)

19

readonly[][name=value...]
marknamesread-only; print list if nonames

eachnamemust be an array
eachnamemust be a function
printreadonlybefore each variable

return[n]
exit function or.script w ith return valuen.W ith no
n,return status of last command.If not in function
or.script, print an error message

set[options][option][words]
set flags and options (seeOptions Toset).words set
positional parameters

set[+options][+ooption][words]
unset flags and options

shift[n]
rename positional parameters; $n+1=$1 ...
ndefaults to 1

shopt[][option...]
print or change values of shell options.W ith no
arguments, print shell option information

only change options
print settings for re-reading
quiet mode; exit status indicates
option status
set (enable) given option; w ith no
options, print those that are set
unset (disable) given option; w ith no
options, print those that are unset

(SeeOptions Toshopt)
suspend[]
suspend the shell untilSIGCONTis received

force suspension, even for login shell
test
evaluate conditional expressions (seeOptions To
testandConditional Expressions)

times
print accumulated process times

trap[][word][sigs]
executeword if signal in sigs received.sigs are
numbers or signal names w ith or w ithout ��SIG��.
W ith no wordorsigs,print traps.W ith no word,
resetsigs to entry defaults.Ifword sigs
to entry defaults.Ifwordis the null string, ignore
sigs.Ifsigs is 0orEXIT,executewordon exit from
shell. If sigs is DEBUG,run word after every
command.

print a list of signal names and numbers
print traps w ith quoting

type[]name...
describe how the shell interprets name

print all possible interpretations
ofname
print the name of the file to execute if
nameis an external program
print a keyw ord describingname

BUILT-IN COMMANDS(continued)

20

ulimit[type][options][limit]
set or print per-process limits
type(default is both):

hard limit
soft limit

options:
all (display only)
core file size
��k��ofdata segment
maximum file size
��k��ofphysical memory
maximum file descriptor + 1
size of pipe buffers
��k��ofstack segment
cpu seconds
max processes for one user
��k��ofvir tualmemory

is assumed if no options are given.The size for
is in 512-byte blocks; the others are in sizes of

1024 bytes
umask[][mask]
set file creation permissions mask to complement of
maskif octal, or symbolic value as inchmod.With
no arguments, print current mask.An octal mask is
permissions to remove, a symbolic mask is
permissions to keep

print output for re-reading
print current mask in symbolic form

unalias [][names]
remove aliases names

remove all aliases
unset[][names]
unset variables names(same as)

unset functions names
unset variables names

Unsetting LINENO, MAILCHECK, OPTARG,
OPTIND,RANDOM,SECONDS,TMOUT and _
removes their special meaning, even if used
afterw ards

w ait[jobid...]
w ait for jobjobid;ifnojob,w ait for all children

BUILT-IN COMMANDS(continued)

Thetestcommand, and its synonym [...],are built-in to
bash.The command accepts all of the options listed in
theConditional Expressions section. How ever,since it is
acommand, options and arguments must be quoted to
get proper behavior,and normal pattern expansion and
field splitting are done.Parentheses used for grouping
must be quoted.Arithmetic expansion is not done for
numeric operators, and pattern matching is not done
for==and!=.testcomplies w ith POSIX.

The and options have the follow ing meanings,
instead of the ones listed inConditional Expressions:

logical AND
logical OR

OPTIONS TOtest

21

Thesetcommand is complicated.Here is a summary.
Use+instead of to turn options off.W ith no
arguments,set prints the names and values of all
variables.

set[abBCefhHkmnpPtuvx][ooption...] [arg...]
automatically exportvariables upon
assignment
print job completion messages
immediately,don�t w ait for next prompt
enable brace expansion (default)
force>|to overw rite for existing files
exit upon non-zero exit from a command
disable pattern expansion
save command locations in the
internal hash table (default)
enable!-style history (default)
place all variable assignments in
the environment (obsolete)
run background jobs in their ow n
process group, print a message
w hen they exit; set automatically for
interactive shells on job control systems
read commands w ithout executing them
(ignored if interactive)
set options; w ith no arguments, print
current settings
allexport same as
braceexpand same as
emacs use anemacs-style line

editor (default)
errexit same as
hashall same as
histexpand same as
history enable history
ignoreeof likeIGNOREEOF=10
keyw ord same as
monitor same as
noclobber same as
noexec same as
noglob same as
notify same as
nounset same as
onecmd same as
physical same as
posix obey the POSIX 1003.2

standard
privileged same as
verbose same as
vi use avi-style line editor
xtrace same as
don�t read$ENV,donot take shell
functions from environment, and ignore
options in$SHELLOPTSenvironment
variable
follow the physical directory structure
for commands that change the directory
read and execute one command,
then exit
make it an error to substitute an unset
variable
print input lines as they�re read

OPTIONS TO set

22

print commands as they�re executed,
preceded by expanded value of$PS4.
Output is quoted for later reuse
turn off , ,stop looking for flags;
any remaining args set the
positional parameters
do not change flags; set positional
parameters from argument list;
w ith no args, unset the positional
parameters

OPTIONS TO set(continued)

Theshoptcommand sets or unsets a number of options
that affect how bashbehaves. This section describes
each option�s effect w hen enabled.Unless noted, they
are all disabled by default.

cdable_vars
treat an argument tocdthat is not a directory as a
variable w hose value is the directory name

cdspell
attempt to correct minor spelling errors in
arguments to cd.Errors tried are transposed
characters, a missing character or an extra
character.Only obeyed in interactive shells

checkhash
check that a command in the hash table still exists
before trying to execute it.If it doesn�t, search
$PATH

checkw insize
check the w indow size after each command and
update$LINESand$COLUMNS

cmdhist
attempt to save all lines of a multi-line command in
the history file as one line, for easy re-editing

dotglob
include files w hose names begin w ith.in path
expansions

execfail
keep non-interactive shells from exiting w henexec
fails

expand_aliases
expand aliases as described in Aliases.Enabled
automatically in interactive shells

extglob
enable the extended pattern matching facilities (see
Patter ns)

histappend
append the current history to$HISTFILEupon exit,
instead of overw riting it

histreedit
if usingreadlineand a history substitution fails, the
user can re-edit the line

histverify
if using readline,load the results of history
substitution intoreadlinefor further editing

hostcomplete
if usingreadline,attempt host completion on w ord
containing@

huponexit
sendSIG HUPto all jobs w henbashexits

interactive_comments
in interactive shells, a w ord starting w ith#starts a
comment. Enabledby default

OPTIONS TO shopt

23

lithist
if cmdhist is also enabled, save multi-line
commands w ith new lines, not semi-colons

mailw arn
print a w arning message if a file being checked for
mail w as accessed since the last time it w as
checked

nocaseglob
do a case-insensitive match w hen expanding
pathnames

nullglob
remove patterns that don�t match any file, instead
of leaving them unchanged in the command line

promptvars
do parameter expansion on the prompt variables
before printing them.Enabled by default

shift_verbose
print an error message w hen the shift count is
greater than the number of positional parameters

sourcepath
use$PATH to find shell files given to the.and
sourcecommands. Enabledby default

OPTIONS TO shopt(continued)

startof comment; terminated by new line
| (pipe) connects tw o commands
; command separator
& run process in background; defaultstdin

from/dev/nullif no job control
&& only run follow ing command if previous

command completed successfully
|| only run follow ing command if previous

command failed
´ enclose string to be taken literally
" enclose string to have variable, command

and arithmetic substitution only
$() in-line command substitution (new style)
` in-line command substitution (old style)
((...)) arithmetic evaluation, likelet "..."
$((...)) in-line arithmetic evaluation
\ treat follow ing character literally
\new line line continuation

SPECIAL CHARACTERS

Jobs can be represented as follow s:

jobid the job identifier for a job, w here:
%% current job
%+ current job

previous job
%?str job uniquely identified bystr
%n job numbern
%pref job w hose command line begins

w ithpref

Usually,aprocess ID may be used instead of ajobid.
Commands that take ajobiduse the current job if no
jobidis supplied.

Traps on SIGCHLD execute w henever a job completes.

The commands fgandbgare only available on systems
that support job control.This includes Linux, BSD
systems, System V Release 4, and most UNIX systems.

JOB IDS AND JOB CONTROL

24

Thereadlinelibrary implements command line editing.
By default, it provides an emacs editing interface,
although a vi interface is available.readline is
initialized either from the file named by$INPUTRC (if
set), or from �/.inputrc.In that file, you can use
conditionals, define key bindings for macros and
functions, and set variables.

From thebashlevel, thebindcommand allow s you to
add, remove and change macro and key bindings.
There are five input mode map names that control the
action taken for each input character.The map names
areemacs,emacs-standard,emacs-meta,emacs-ctlx,
vi,vi-command,andvi-insert.emacs is the same as
emacs-standard,andviis the same as vi-command.

Youchoose w hich editor you prefer w ith
or in your�/.bashrcfile, or at runtime.

readlineunderstands the character names DEL,ESC,
LFD,NEWLINE,RET,RETURN,RUBOUT,SPACE,SPCand
TAB.

REA DLINE

Directives in the.inputrcfile provide conditional and
include facilities similar to the C preprocessor.

$include
include a file, e.g., a system-w ide/etc/inputrcfile

$if
start aconditional, for terminal or application
specific settings.Youcan test the follow ing:

application= test the application, e.g.bashorgdb
mode= test the editing mode,emacsorvi
term= test the terminal type

The use ofapplication=is optional; e.g.,$if Bash
$else
startthe ��else��par tof a conditional

$endif
finish a conditional

REA DLINE DIRECTIVES

Keys bound to a macro place the macro text into the
input; keys bound to a function run the function.

Youcan use these escape sequences in bindings:

\a alert(bell) \r carriage return
\b backspace \t horizontal tab (TAB)

control prefix \v verticaltab
\d delete (DEL) \\ backslash
\e escape (ESC) \" literal"
\f form feed \́ literaĺ

meta prefix \ddd octal valueddd
\n new line \xhhh hex valuehhh

Macros and function bindings look like:

macro: key-seq:"text"
function: key-seq:function-name

Macros have quoted text on the right of the colon;
functions have function names.A key-seqis either a
single character or character name (such as),
or a quoted string of characters (single or double
quotes).

READLINE KEY BINDINGS

25

Variables control different aspects of readline�s
behavior.You set a variable w ith

setvariable value

Unless otherw ise noted,valueshould be eitherOn or
Off.The descriptions below describe the effect w hen
the variable is On.Default values are show n in
parentheses.

bell-style(audible)
defines how readlineshould ring the bell:

audible ring the bell
none never ring the bell
visible flash the screen

comment-begin(#)
insert this string for readline-insert-comment,
(bound toM-#inemacsmode and to#invimode)

completion-ignore-case(Off)
ignore case w hen doing completions

completion-query-items(100)
if the number of completion items is less than this
value, place them in the command line. Otherw ise,
ask the user if they should be show n

convert-meta(On)
treat characters w ith the eighth bit set as the meta
version of the equivalent seven bit character

disable-completion(Off)
do not do completion

editing-mode(emacs)
set the initial editing mode. Possible values are
emacs orvi

enable-keypad(Off)
attempt to enable the application keypad.This may
be needed to make the arrow keys w ork

expand-tilde(Off)
attempt tilde expansion as partofw ord completion

input-meta(Off)
meta-flag(Off)
enable eight bit input.The tw o variable names are
synonyms

keymap(emacs)
set the current keymap. SeeReadlinefor a list of
allow ed values.Theediting-modevariable also
affects the keymap

mark-directories(On)
append a/to completed directory names

mark-modified-lines (Off)
place a*at the front of modified history lines

output-meta(Off)
print characters w ith the eighth bit set directly,not
asM-x

print-completions-horizontally(Off)
display completions horizontally,w ith the matches
sortedalphabetically,instead of vertically dow n the
screen

show -all-if-ambiguous (Off)
immediately list w ords w ith multiple possible
completions, instead of ringing the bell

visible-stats (Off)
w hen listing possible completions, append a
character that denotes the file�s type

REA DLINE VARIABLES

More information aboutreadlinecan be found on-line at
http://w w w.ssc.com/ssc/bash.

26

